Question		Marks	Additional Guidance
1 (a (i)	1 concentration of PCBs increases up the food chain/ora; 2 concentration is much higher in larger organisms/ora; 3 big(gest) increase between herring and porpoise; 4 (only) herring / porpoise / animals at top of food chain, have a range of concentrations; 5 use of figures (arbitrary units) to make a comparison between two, trophic levels/organisms;	max 3	MP4 must be a qualitative statement, not just statement of figures MP5 - must be a comparison not just figures unqualified, e.g. use of 'but', 'and', 'only', etc. and accept $\times 1.8 / 2, \times 4, \times 30, \times 384, \times 1900$
(ii)	animals at higher trophic levels live longer; eat many of the animals below them in the food chain; PCBs cannot be, excreted/eliminated/removed/broken down; so build up in the body (tissues); bioaccumulation/biomagnification;	max 3	
(b) (i)	mutation/change in DNA; any mutagen; gene(s) code for, AHR/protein; any sensible suggestions about change to protein molecule; fish susceptible to PCB poisoning died; fish with changed protein survived and reproduced; passing on mutant allele; reference to (natural) selection;	max 5	A ref to genetic variation R AHR/protein, mutates e.g. radiati e.g. different amino acid sequen
(ii)	fish with mutant allele not at an advantage/no selection for PCB resistance; PCB resistant fish may not compete well with others/ora; so less successful at breeding/ora; leave fewer offspring/ ora; idea that mutant allele is diluted as fish interbreed;	max 2	A 'the altered AHR protein is of less/no use'

Question		Marks	Additional Guidance
1 (c)	1 persistent/does not breakdown/accumulates; 2 fill up/takes up space in, landfill sites/rubbish dumps; 3 suffocate/choke, animals; 4 kills animals that get trapped in it; 5 release, toxins/poisons; 6 AVP;	max 3	MP1 A 'can't get rid of them'/takes a long time to breakdown MP3 and MP4 do not allow kill unqualified MP5 maybe in context of leaching out, burning or eating I references to recycling I pollution unqualified - (fill with water to become) breeding grounds for mosquitoes - blocks light for, photosynthesis - negative effect on tourism/visual pollutant - blocks drains - blocks flow of water in, rivers/streams - reduces soil, drainage/aeration - interferes with water treatment allows spread of alien species in the oceans
		[Total: 16]	

\begin{tabular}{|c|c|c|c|c|}
\hline 2 (a (i) \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& \mathbf{L}=\text { (primary) producer(s); } \\
\& \mathbf{N}=\text { secondary consumer(s); }
\end{aligned}
\]} \& [2] \& ignore (green) plant ignore carnivore \\
\hline (ii) \& \multicolumn{2}{|l|}{\begin{tabular}{l}
energy, of / at, each trophic level ; \\
A shows that energy, decreases / is lost (at each trophic level) \\
e.g. 'L has more energy than M'
\end{tabular}} \& [1] \& ```
R biomass / numbers
R 'production of energy'
ignore energy passed on - shown by the arrows
not the boxes
``` \\
\hline (iii) \& \[
\begin{array}{|l}
1 \\
2 \\
3 \\
4 \\
4 \\
5 \\
6 \\
7
\end{array}
\] \& \begin{tabular}{l}
idea that \\
no, energy left ; \\
use figures from Fig. 2.1 to show that all energy to \(\mathbf{O}\) is already \\
little / not enough, energy available from eating, tertiary consumers / O / AW ; \\
loss of ( \(90 \%\) ) energy, at / between, each trophic level / AW ; \\
would be very small population of predators of \(\mathbf{O}\); \\
(population of) predators of \(\mathbf{O}\) unlikely to survive ; \\
AVP ; e.g. idea that difficult to be a predator of \(\mathbf{O}\) because \(\mathbf{O}\) is likely to be 'large and fierce'
\end{tabular} \& [max 3] \& \begin{tabular}{l}
A 'needing to eat a lot to get enough energy'? \\
MP4 no need to use the term trophic level if idea is implied
\end{tabular} \\
\hline (iv) \& 1
2
3
4 \& loss of energy (from, each / all, trophic level(s)) ; (by) respiration ; (to the) environment / atmosphere / surroundings ; as, heat / thermal energy ; \& [max 2] \& accept once only \\
\hline (b) \& 1
2
2

3
4
5
5

6 \& \begin{tabular}{l}
$M$ is the herbivore \\
more (biomass of / energy in), producers / L; \\
as fewer / no, herbivores / primary consumers / predators (to eat \\
L) / M ; \\
fewer / extinction of, carnivores / secondary consumers / N ; \\
fewer / extinction of, tertiary consumers / O ; \\
as less, food / energy ; \\
more competition ;

 \& [max 3] \& 

ignore any changes to decomposers / recycling A the argument that more primary consumers will migrate into the ecosystem \\
ignore predators / organisms unqualified
\end{tabular} \\

\hline
\end{tabular}

|  | Answer | Marks | Guidance for Examiners |
| :---: | :---: | :---: | :---: |
| 3 (a) | segments ; <br> antennae / 'feelers' ; <br> projections over whole of the body / AW ; <br> idea of heads / tails ; <br> A not parasitic / free living / AW ; | max [3] | ```A 'sections' / 'divisions' / 'rings' / 'parts' / 'sub-parts' A bristles / chaetae / hairs R feet / legs / AW``` |
| (b) | genus / generic (name) ; | [1] | A 'genus part of species name' |
| (c) (i) | (all the) organisms / community ; <br> in a given area / AW ; <br> and non-living factors / abiotic factors AW ; <br> idea of interacting together ; | max [3] | A place / location / region / habitat R ecosystem i.e. physical factors / nam e.g. feeding (ignore feeding on each other) |
| (ii) | arrows point from food $\rightarrow$ feeder ; <br> organisms in correct sequence ; <br> plankton $\rightarrow$ annelid / named $\rightarrow$ wading bird(s) $\rightarrow$ bird of prey $=2$ marks | [2] |  |
| (iii) | shows complex feeding relationships / AW ; <br> all organisms in the ecosystem ; A (many) more / part of / wide <br> range of <br> each species has more than one food source / AW ; <br> each species has more than one predator / AW ; <br> AVP ; e.g. shows possible chain reaction to an animal's population change | max [2] | A all possible connections |


| 3 (d) | many, sperm and eggs / gametes, released at the same time ; increases chances of gametes fusing ; (many individuals so more genetic) variation ; may occur at a time when food is available ; for development of, young / offspring; or when there are currents to disperse young ; smaller proportion of, eggs / zygotes / embryos, eaten by predators ; AVP ; | max [3] | $\mathbf{R}$ fewer predators |
| :---: | :---: | :---: | :---: |
| (e) | assume answer is about meiosis unless told otherwise mark differences between meiosis and mitosis to max 3 <br> 1 two divisions ; <br> 2 four, cells / nuclei / gametes, produced ; <br> 3 halves chromosome number ; <br> 4 (diploid to) haploid ; <br> 5 variation (between cells / nuclei / gametes) ; <br> 6 gametes have different alleles ; <br> 7 gives (more) variation in offspring ; <br> 8 so chromosome number remains the same in next generation; | max [4] | ignore quoted numbers of chromosomes <br> $\mathbf{R}$ genes <br> A number does not double with each generation / full pairs of chromosomes when fertilized / AW <br> A ora for mitosis |
| [Total:18] |  |  |  |


| 4 (a) | group of organisms of the same species ; in the same area / at the same time ; | [2] | A 'of a kind' / a species <br> A same habitat / ecosystem / community |
| :---: | :---: | :---: | :---: |
| (b) (i) | greater predation by owls / more predators / more owls; lack of food / starvation / more competition for food; adverse (named) weather condition (s) ; <br> disease / sickness / illness; emigration; <br> AVP; habitat destruction | max [3] | $\mathbf{R}$ climate change |
| (ii) | 1 owl population increases, after / AW, vole population increases ; <br> 2 owl population crashes (in year 7) ; <br> 3 immediately after crash in vole population ; <br> 4 vole population crashes / decreases (in year 6) ; <br> 5 when there are most owls ; <br> 6 if owls ate (much) other prey there would not be a close relationship / AW ; <br> 7 ref to numbers of owls from the graph ; | max [2] | if MP1 and MP2 not given accept the idea that 'owl population follows changes in vole population' if answer does not refer to the increase or decrease |
| [Total:7] |  |  |  |

